Rapamycin-Resistant mTOR Activity Is Required for Sensory Axon Regeneration Induced by a Conditioning Lesion
نویسندگان
چکیده
Neuronal mammalian target of rapamycin (mTOR) activity is a critical determinant of the intrinsic regenerative ability of mature neurons in the adult central nervous system (CNS). However, whether its action also applies to peripheral nervous system (PNS) neurons after injury remains elusive. To address this issue unambiguously, we used genetic approaches to determine the role of mTOR signaling in sensory axon regeneration in mice. We showed that deleting mTOR in dorsal root ganglion (DRG) neurons suppressed the axon regeneration induced by conditioning lesions. To establish whether the impact of mTOR on axon regeneration results from functions of mTOR complex 1 (mTORC1) or 2 (mTORC2), two distinct kinase complexes, we ablated either Raptor or Rictor in DRG neurons. We found that suppressing mTORC1 signaling dramatically decreased the conditioning lesion effect. In addition, an injury to the peripheral branch boosts mTOR activity in DRG neurons that cannot be completely inhibited by rapamycin, a widely used mTOR-specific inhibitor. Unexpectedly, examining several conditioning lesion-induced pro-regenerative pathways revealed that Raptor deletion but not rapamycin suppressed Stat3 activity in neurons. Therefore, our results demonstrate that crosstalk between mTOR and Stat3 signaling mediates the conditioning lesion effect and provide genetic evidence that rapamycin-resistant mTOR activity contributes to the intrinsic axon growth capacity in adult sensory neurons after injury.
منابع مشابه
Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration
The developmental decrease of the intrinsic regenerative ability of the mammalian central nervous system (CNS) is associated with reduced activity of mechanistic target of rapamycin (mTOR) in mature neurons such as retinal ganglion cells (RGCs). While mTOR activity is further decreased upon axonal injury, maintenance of its pre-injury level, for instance by genetic deletion of the phosphatase a...
متن کاملPromoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling.
Cell-type-specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target ...
متن کاملConditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice.
Regeneration of injured adult sensory neurons within the CNS is essentially abortive, attributable in part to lesion-induced or revealed inhibitors such as the chondroitin sulfate proteoglycans and the myelin inhibitors (Nogo-A, MAG, and OMgp). Much of this inhibition may be overcome by boosting the growth status of sensory neurons by delivering a conditioning lesion to their peripheral branche...
متن کاملPten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury.
UNLABELLED Chronic spinal cord injury (SCI) is a formidable hurdle that prevents a large number of injured axons from crossing the lesion, particularly the corticospinal tract (CST). This study shows that Pten deletion in the adult mouse cortex enhances compensatory sprouting of uninjured CST axons. Furthermore, forced upregulation of mammalian target of rapamycin (mTOR) initiated either 1 mont...
متن کاملElectrical Activity Suppresses Axon Growth through Cav1.2 Channels in Adult Primary Sensory Neurons
BACKGROUND Primary sensory neurons of the dorsal root ganglia (DRG) regenerate their spinal cord axon if the peripheral nerve axon has previously been cut. This conditioning lesion confers axon growth competence to the neurons. However, the signal that is sensed by the cell upon peripheral lesion to initiate the regenerative response remains elusive. RESULTS We show here that loss of electric...
متن کامل